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An O�N log N� treecode algorithm is presented for computing pairwise interactions of electrostatic free
energy for reaction potentials with polarization effects due to the macroscopic solvent. A multipole expansion
for a cluster is used to account for particles inside the cluster, where a spatial difference is applied to obtain the
expansion coefficients of the polarization function. Numerical tests are performed to illustrate the accuracy and
efficiency of the approach. The algorithm is significant in speeding up generalized Born methods for biomo-
lecular simulations under the framework of macroscopically treating solvents.
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I. INTRODUCTION

Hierarchical treecode algorithms �1–7� have been used
extensively in studying particle interactions in various appli-
cations such as astrophysics, biophysics, computational
chemistry, and mechanical engineering. To introduce the al-
gorithm, the particles are usually divided into several nested
clusters with an octree structure. A multipole expansion is
used for a particle-cluster interaction when the particle is far
from the cluster, otherwise a direct summation is used for a
short-range interaction. By this way, the computational com-
plexity is reduced from O�N2� to O�N log N� operations for
Barnes-Hut-type treecodes �2�, or O�N� for the so-called fast
multipole method �FMM� �3� if an ingenious step converting
the multipole expansion to a local expansion is performed.

Treecodes have been developed for computing the Cou-
lomb, van der Waals, Yukawa, and Lennard-Jones potentials,
and so on; see, for example, �8�. In this work, a treecode
algorithm is presented for calculating the following “polar-
ized” Coulomb interactions of an N-particle system:

G = �
j=1

N

qj� j , �1�

with a reaction-field potential of particle j given by

� j = �
i=1

N
qi

��ri − r j�2 + cij

, �2�

where qi and ri are the charge and location of particle i, and
cij is a positive, smooth, and slowly varying function of lo-
cations. In the generalized Born �GB� theory �9–14� of bio-
molecular simulations, G is known as the solvation free en-
ergy of a biomolecule immersed into an aqueous solution.
Also the function is assumed to be separable or approxi-
mately separable; i.e., cij �cicj, where ci is the approximate
Born radius reflecting the polarization effect of the bulk sol-
vent and usually represented by a volume integral over the
solvent region. It should be remarked that, in most GB meth-
ods, cij takes the form of cicj exp�−rij

2 /4cicj�. As the expo-

nential term is actually very close to 1, cij can be easily
separated by taking an average of this term in a cluster.

In molecular-dynamics simulations of biological systems,
there are two principal approaches of computational models
for electrostatic interactions, namely, the explicit and implicit
models. Explicit solvation models, which represent the sol-
vent in full atomistic detail and the particle interactions are
governed by the Coulomb’s law, are limited by high compu-
tational cost. Macroscopic implicit solvation models �14–16�
replace the solvent with a high dielectric continuum media
and thus offer a cheaper way for simulations of the biological
systems by greatly reducing the number of the degree of
freedom. However, although implicit simulation methods
have advanced dramatically in recent years, it is well known
that the lack of fast and accurate methods to calculate elec-
trostatic interactions remains the bottleneck of computational
speedup, where the accuracy and speed are usually two op-
posing objectives. An accurate description of the solvent en-
vironment with the Poisson-Boltzmann �PB� theory is essen-
tial for realistic simulations, for which numerical solutions
such as finite difference and finite element methods have to
be used and it is still at a high computational cost. The GB
formula produces an accurate approximation to the Poisson
result, while still fast enough to be applied in molecular-
dynamics simulations. The GB methods have been widely
studied �10,12,17� in last two decades owing to their appli-
cability and performance. However, the desiring demand in
accuracy and speed remains unresolved when implementing
the GB methods.

Recently, much interest has emerged regarding fast nu-
merical implementations of macroscopic electrostatic models
�18–22� such as for the PB model and the hybrid reaction-
field model. Their applications in large macromolecular
simulations confront many issues, for example, the mesh
generation and force calculations. In contrast, the use of the
GB model is straightforward in these simulations once the
faster algorithms have been developed for computing the
Born radii and the pairwise summation. The GB methods
have been widely used in molecular-dynamics simulations
for a long time as they are simple and at the same time very
accurate macroscopic electrostatic models. A linear scaling
implementation of the pairwise interactions is significant for
studying macromolecules, where the method of the direct
summation is limited if the particle number reaches a mag-*xuzl@ustc.edu
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nitude of a hundred thousand. The fast Fourier transform
techniques �23,24� have been developed for Born radii evalu-
ations. The present algorithm then aims to be an accelerator
of the pairwise summation involved in the GB model.

The primary aim of this Rapid Communication is to
present a treecode of computing �Eq. �1��. Extension to the
force calculation is solvable, as we have a process of recon-
structing the Born radii derivatives. However, how to im-
prove the accuracy in force calculations and couple it with a
fast Born radii solver will be important issues, which would
be pursued in future publications. Dimensionless units are
used throughout this work.

II. TREECODE ALGORITHM

To compute Eq. �2� in O�log N� operations for each par-
ticle, the core idea is to use a multipole expansion to the
potential function for particles in a cluster. Let us consider
the interaction between particles in a cubic cluster A with
center rA and a distant particle j. The reaction potential for a
location r inside the cluster due to charge j has the multidi-
mensional Taylor expansion with respective to rA:

��r� =
qj

��r − r j�2 + cjc�r − rA�

= �
	�	�0

1

�!
����rA − r j��r − rA��, �3�

where function c�r−rA� is an approximate function from

ci , i�A� and vector �= ��1 ,�2 ,�3� is represented by the
multi-index notation often used in multivariable calculus. By
using a pth order Taylor approximation, the reaction poten-
tial of j due to the cluster is given by

� j,A � �
	�	=0

p
1

�!
����rA − r j��

i�A

qi�ri − rA�� = �
���=0

p

T�MA
�,

�4�

where T�= �1 /�!�����rA−r j� is the �th order coefficient of
the Taylor expansion and MA

�=�i�Aqi�ri−rA�� is the �th
multipole moment of cluster A. As we only need to compute
once the moments for each cluster, there are 3

2 p�p+1�+1
operations, provided the Taylor expansion coefficients, for
each particle-cluster interaction, which is independent of the
particle number in the cluster. This process results in an
O�N log N� calculation of the pairwise summation, where
log N comes from the number of clusters.

Suppose function c�r−rA� has the following Taylor ex-
pansion:

c�r − rA� = �
	�	=0

�
c�

�!
�r − rA��, �5�

where c� are the coefficients. Then T� can be calculated by a
Taylor series expansion. When 	�	�2, these are written as

T0 =
1

�rj,A
2 + cjc0�1/2 , �6�

Tek
= −

1

2
�2xk + cjcek

��T0�3, �7�

T2ek
=

3

2

�Tek
�2

T0
−

2 + cjc2ek

4
�T0�3, �8�

Tek+el
=

3Tek
Tel

T0
−

cjcek+el

2
�T0�3, k � l , �9�

where rj,A= �r j −rA�, xk= �rA−r j� ·ek, and ek is the unit vector
of the kth coordinate.

A difficulty is we have only the information of point val-
ues c�r� at the particle locations. The present algorithm trun-
cates the expansion to p=1 and currently higher-order trun-
cations remain a challenge due to the difficulty of
reconstructing coefficients c�. Nevertheless, it leads to a rela-
tive error of a few 0.1% in free-energy calculations, which is
often sufficiently accurate in practical simulations. The code
is a modified version of that developed by Krasny and his
collaborators �5,25–27�. The octree is constructed by divid-
ing the simulation box into a hierarchy of clusters, where the
root cluster is the smallest box containing all the particles
and it is bisected in each dimension into eight children. Re-
cursive subdivisions are applied to each child until the num-
ber of particles in a cube is less than a specified number N0,
which is a leaf of the created tree data structure. For each
cluster A, the zero-order Taylor coefficient c0

A of function
c�r−rA� is computed by an average over the particles within
it, and each first-order coefficient is constructed by a differ-
ence of c0

A of its eight children as

cek

A =

�
B�Achild

+

c0
B − �

B�Achild
−

c0
B

2�xk
, �10�

where Achild
+ �or Achild

− � are the four children clusters of A
satisfying the center coordinate xk larger �or smaller� than
that of its father cluster, and �xk is the size of box A along xk
direction. If the corresponding child is null, the value c0

B

takes c0
A. Furthermore, if cluster A is a leaf, a linear least-

squares fitting �28� is applied to construct the approximate
linear function and the first-order Taylor coefficient cek

A .
The potential � j in Eq. �2� of a particle j is computed by

traversing the tree. This is done recursively by starting from
the root cluster. At each step relevant to cluster A, a multi-
pole acceptance criterion �MAC� �27�,

��x1
2 + �x2

2 + �x3
2

2�r j − rA�
� � , �11�

for a specified error-control parameter � is first decided. If
the MAC is satisfied, i.e., j and A are well separated, � j,A is
computed by the pth order multipole expansion, where, if the
moments MA

� and the coefficients c�
A are not available, they

are first calculated and stored for the use of other particle-
cluster interactions relevant to cluster A. If the MAC is not
satisfied, then the algorithm computes � j,A by a direct sum-
mation if A is a leaf of the tree or descends the tree to the
next level if A is not a leaf.
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III. RESULTS

Numerical examples are performed to test the algorithm
by a model of a spherical geometry and two biomolecules. In
all the calculations, we set �=0.3 for the MAC parameter
and N0=20 for the maximum particle number in a leaf. To
illustrate the performance, the results of p=1 is compared to
those of p=0 by taking those of direct summation as the
exact solution. The calculations are run on a Windows PC
machine with a 3.0 GHz dual-core CPU.

In the first test, particles are randomly generated inside a
unit sphere �ri�0.95 in order to avoid singularity� and each
particle has a random charge between −0.5 and 0.5. The
Born radius function is taken as a quadratic function of r as
ci=1−ri

2 which is from the R6 model �13,29,30� of the
sphere. For each calculation, we compute the L1 relative er-
ror of the potential � j,

E1 =
1

N
�
j=1

N �� j − � j
ds�

max��ds�
, �12�

and the free-energy relative error,

EG =
G − Gds

Gds , �13�

where the superscript ds represents the results by the direct
summation.

Figure 1 shows the relative errors and the CPU time as a

function of the number of particles N increasing from 1 to 50
k for two truncation orders of the multipole expansion. The
break-even points of p=0 and 1 are about 2 and 4 k, respec-
tively. It can be observed that the treecode algorithm is with
an order of O�N log N� and it is significantly faster than the
direct summation; when the particle number is 50 k, the
speed up of p=1 is a factor around 4.0. The L1 relative errors
of the p=1 case are a few 0.1% and all less than 1%, which
averagely have about four times less than those of the p=0
case. The performance measured by the free-energy error is
also reasonable; most of calculations are less than 1%, which
are significantly better than p=0. A tendency can be also
seen that the fluctuation of free-energy errors is decreased
with increasing of particles. In Fig. 1�c�, we also illustrates
500 tests for 4000 randomly generated particles in order to
verify the accuracy for different distributions of the same
number of particles. We can see from the plot that most of
the errors �97.8% tests� are less than 2%, and all of them are
less than 3%, demonstrating that although the free energy is
a sum of signed data and the denominator in �13� may be a
small number, the error performance of the algorithm re-
mains attractive.

Next, we test the algorithm by two protein molecules with
PDB access codes 3GB1 and 1OCA. Our concern is to show
the accuracy of the proposed algorithm for proteins which
are the primary objects. These two proteins contain 855 at-
oms and 2503 atoms, respectively, which have significantly
different sizes and thus serve well the aim of testing the
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FIG. 1. Accuracy and CPU time performance of the tree code for sphere. �a� The relative errors E1 �lines� and EG �symbols� for the
results of the treecode algorithm with p=0 and 1. �b� The CPU times of the treecode algorithm and the direct summation. �c� EG errors of
500 tests for 4000 randomly generated particles.
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performance of the algorithm. Before the calculations, the
Born radii are provided by using the PBEQ module of the

macromolecular modeling package CHARMM �31�. The tree-
code vs direct summation results of the reaction potential � j
are shown in Fig. 2. Clear improvement in accuracy can be
observed for the p=1 case in comparison to the p=0 one. We
also calculate the E1 and EG errors for p=1. The E1 relative
errors of the 3GB1 and 1OCA are 0.31% and 0.96%, respec-
tively, and the EG errors are 0.12% and 0.25%, which are
sufficiently accurate for practical applications.

IV. CONCLUSION

In this work, we have introduced a treecode algorithm for
evaluating electrostatic interactions in presence of solvent-
solute polarization, which is significant in generalized Born
theory of macromolecular simulations. Test calculations for
spherical models and two protein molecules demonstrate the
accuracy and efficiency of the method. As the performance
of the algorithm is shown attractive, we plan to further study
this algorithm for force calculations and couple it with a fast
Born radii solver to obtain a complete package for biomo-
lecular electrostatic computation.
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FIG. 2. Treecode �p=0 and 1� vs direct summation for the re-
sults of � j. Two protein molecules 3GB1 and 1OCA are calculated.
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